Graded bidirectional synaptic plasticity is composed of switch-like unitary events

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graded bidirectional synaptic plasticity is composed of switch-like unitary events.

Biological information storage events are often rapid transitions between discrete states. In neural systems, the initiation of bidirectional plasticity by all-or-none events may help confer robustness on memory storage. Here, we report that at CA3-CA1 hippocampal synapses, individual potentiation and depression plasticity events are discrete and heterogeneous in nature. Individual synapses beg...

متن کامل

Bidirectional Synaptic Plasticity Regulated by Phosphorylation of Stargazin-like TARPs

Synaptic plasticity involves protein phosphorylation cascades that alter the density of AMPA-type glutamate receptors at excitatory synapses; however, the crucial phosphorylated substrates remain uncertain. Here, we show that the AMPA receptor-associated protein stargazin is quantitatively phosphorylated and that stargazin phosphorylation promotes synaptic trafficking of AMPA receptors. Synapti...

متن کامل

Synaptic AMPA Receptor Exchange Maintains Bidirectional Plasticity

Activity-dependent synaptic delivery of GluR1-, GluR2L-, and GluR4-containing AMPA receptors (-Rs) and removal of GluR2-containing AMPA-Rs mediate synaptic potentiation and depression, respectively. The obvious puzzle is how synapses maintain the capacity for bidirectional plasticity if different AMPA-Rs are utilized for potentiation and depression. Here, we show that synaptic AMPA-R exchange i...

متن کامل

Bidirectional synaptic plasticity: from theory to reality.

Theories of receptive field plasticity and information storage make specific assumptions for how synapses are modified. I give a personal account of how testing the validity of these assumptions eventually led to a detailed understanding of long-term depression and metaplasticity in hippocampal area CA1 and the visual cortex. The knowledge of these molecular mechanisms now promises to reveal wh...

متن کامل

Synaptic plasticity: A molecular memory switch

Recent work shows that two molecules with major roles in synaptic plasticity--CaMKII and the NMDA receptor--bind to each other. This binding activates CaMKII and triggers its autophosphorylation. In this state, it may act as a memory switch and strengthen synapses through enzymatic and structural processes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 2005

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.0502332102