Graded bidirectional synaptic plasticity is composed of switch-like unitary events
نویسندگان
چکیده
منابع مشابه
Graded bidirectional synaptic plasticity is composed of switch-like unitary events.
Biological information storage events are often rapid transitions between discrete states. In neural systems, the initiation of bidirectional plasticity by all-or-none events may help confer robustness on memory storage. Here, we report that at CA3-CA1 hippocampal synapses, individual potentiation and depression plasticity events are discrete and heterogeneous in nature. Individual synapses beg...
متن کاملBidirectional Synaptic Plasticity Regulated by Phosphorylation of Stargazin-like TARPs
Synaptic plasticity involves protein phosphorylation cascades that alter the density of AMPA-type glutamate receptors at excitatory synapses; however, the crucial phosphorylated substrates remain uncertain. Here, we show that the AMPA receptor-associated protein stargazin is quantitatively phosphorylated and that stargazin phosphorylation promotes synaptic trafficking of AMPA receptors. Synapti...
متن کاملSynaptic AMPA Receptor Exchange Maintains Bidirectional Plasticity
Activity-dependent synaptic delivery of GluR1-, GluR2L-, and GluR4-containing AMPA receptors (-Rs) and removal of GluR2-containing AMPA-Rs mediate synaptic potentiation and depression, respectively. The obvious puzzle is how synapses maintain the capacity for bidirectional plasticity if different AMPA-Rs are utilized for potentiation and depression. Here, we show that synaptic AMPA-R exchange i...
متن کاملBidirectional synaptic plasticity: from theory to reality.
Theories of receptive field plasticity and information storage make specific assumptions for how synapses are modified. I give a personal account of how testing the validity of these assumptions eventually led to a detailed understanding of long-term depression and metaplasticity in hippocampal area CA1 and the visual cortex. The knowledge of these molecular mechanisms now promises to reveal wh...
متن کاملSynaptic plasticity: A molecular memory switch
Recent work shows that two molecules with major roles in synaptic plasticity--CaMKII and the NMDA receptor--bind to each other. This binding activates CaMKII and triggers its autophosphorylation. In this state, it may act as a memory switch and strengthen synapses through enzymatic and structural processes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2005
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.0502332102